Efficient kernel change point detection#
Bases: BaseEstimator
Find optimal change points (using dynamic programming or pelt) for the special case where the cost function derives from a kernel function.
Given a segment model, it computes the best partition for which the sum of errors is minimum.
See the user guide for more information.
Source code in ruptures/detection/kernelcpd.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
__init__(kernel='linear', min_size=2, jump=1, params=None)
#
Creates a KernelCPD instance.
Available kernels:
linear
: \(k(x,y) = x^T y\).rbf
: \(k(x, y) = exp(\gamma \|x-y\|^2)\) where \(\gamma>0\) (gamma
) is a user-defined parameter.cosine
: \(k(x,y)= (x^T y)/(\|x\|\|y\|)\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kernel |
str
|
name of the kernel, ["linear", "rbf", "cosine"] |
'linear'
|
min_size |
int
|
minimum segment length. |
2
|
jump |
int
|
not considered, set to 1. |
1
|
params |
dict
|
a dictionary of parameters for the kernel instance |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if the kernel is not implemented. |
Source code in ruptures/detection/kernelcpd.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
|
fit(signal)
#
Update some parameters (no computation in this function).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal. Shape (n_samples, n_features) or (n_samples,). |
required |
Returns:
Type | Description |
---|---|
KernelCPD
|
self |
Source code in ruptures/detection/kernelcpd.py
65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
fit_predict(signal, n_bkps=None, pen=None)
#
Fit to the signal and return the optimal breakpoints.
Helper method to call fit and predict once
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal. Shape (n_samples, n_features) or (n_samples,). |
required |
n_bkps |
int
|
Number of change points. Defaults to None. |
None
|
pen |
float
|
penalty value (>0). Defaults to None. Not considered if n_bkps is not None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
sorted list of breakpoints |
Source code in ruptures/detection/kernelcpd.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
predict(n_bkps=None, pen=None)
#
Return the optimal breakpoints. Must be called after the fit method.
The breakpoints are associated with the signal passed to
fit()
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_bkps |
int
|
Number of change points. Defaults to None. |
None
|
pen |
float
|
penalty value (>0). Defaults to None. Not considered if n_bkps is not None. |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if |
BadSegmentationParameters
|
in case of impossible segmentation configuration |
Returns:
Type | Description |
---|---|
list[int]: sorted list of breakpoints |
Source code in ruptures/detection/kernelcpd.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
|