Dynamic programming#
Bases: BaseEstimator
Find optimal change points using dynamic programming.
Given a segment model, it computes the best partition for which the sum of errors is minimum.
Source code in ruptures/detection/dynp.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
__init__(model='l2', custom_cost=None, min_size=2, jump=5, params=None)
#
Creates a Dynp instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
segment model, ["l1", "l2", "rbf"]. Not used if |
'l2'
|
custom_cost |
BaseCost
|
custom cost function. Defaults to None. |
None
|
min_size |
int
|
minimum segment length. |
2
|
jump |
int
|
subsample (one every jump points). |
5
|
params |
dict
|
a dictionary of parameters for the cost instance. |
None
|
Source code in ruptures/detection/dynp.py
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
|
fit(signal)
#
Create the cache associated with the signal.
Dynamic programming is a recurrence; intermediate results are cached to speed up computations. This method sets up the cache.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal. Shape (n_samples, n_features) or (n_samples,). |
required |
Returns:
Type | Description |
---|---|
Dynp
|
self |
Source code in ruptures/detection/dynp.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
fit_predict(signal, n_bkps)
#
Fit to the signal and return the optimal breakpoints.
Helper method to call fit and predict once
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal. Shape (n_samples, n_features) or (n_samples,). |
required |
n_bkps |
int
|
number of breakpoints. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
sorted list of breakpoints |
Source code in ruptures/detection/dynp.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
predict(n_bkps)
#
Return the optimal breakpoints.
Must be called after the fit method. The breakpoints are associated with the signal passed
to fit()
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_bkps |
int
|
number of breakpoints. |
required |
Raises:
Type | Description |
---|---|
BadSegmentationParameters
|
in case of impossible segmentation configuration |
Returns:
Name | Type | Description |
---|---|---|
list |
sorted list of breakpoints |
Source code in ruptures/detection/dynp.py
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
|
seg(start, end, n_bkps)
cached
#
Recurrence to find the optimal partition of signal[start:end].
This method is to be memoized and then used.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
start |
int
|
start of the segment (inclusive) |
required |
end |
int
|
end of the segment (exclusive) |
required |
n_bkps |
int
|
number of breakpoints |
required |
Returns:
Name | Type | Description |
---|---|---|
dict |
{(start, end): cost value, ...} |
Source code in ruptures/detection/dynp.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
|