Binary segmentation#
Bases: BaseEstimator
Binary segmentation.
Source code in ruptures/detection/binseg.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
__init__(model='l2', custom_cost=None, min_size=2, jump=5, params=None)
#
Initialize a Binseg instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
segment model, ["l1", "l2", "rbf",...]. Not used if |
'l2'
|
custom_cost |
BaseCost
|
custom cost function. Defaults to None. |
None
|
min_size |
int
|
minimum segment length. Defaults to 2 samples. |
2
|
jump |
int
|
subsample (one every jump points). Defaults to 5 samples. |
5
|
params |
dict
|
a dictionary of parameters for the cost instance. |
None
|
Source code in ruptures/detection/binseg.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
fit(signal)
#
Compute params to segment signal.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal to segment. Shape (n_samples, n_features) or (n_samples,). |
required |
Returns:
Type | Description |
---|---|
Binseg
|
self |
Source code in ruptures/detection/binseg.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
fit_predict(signal, n_bkps=None, pen=None, epsilon=None)
#
Fit to the signal and return the optimal breakpoints.
Helper method to call fit and predict once
Parameters:
Name | Type | Description | Default |
---|---|---|---|
signal |
array
|
signal. Shape (n_samples, n_features) or (n_samples,). |
required |
n_bkps |
int
|
number of breakpoints. |
None
|
pen |
float
|
penalty value (>0) |
None
|
epsilon |
float
|
reconstruction budget (>0) |
None
|
Returns:
Name | Type | Description |
---|---|---|
list |
sorted list of breakpoints |
Source code in ruptures/detection/binseg.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
predict(n_bkps=None, pen=None, epsilon=None)
#
Return the optimal breakpoints.
Must be called after the fit method. The breakpoints are associated with the
signal passed to fit()
.
The stopping rule depends on the parameter passed to the function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_bkps |
int
|
number of breakpoints to find before stopping. |
None
|
pen |
float
|
penalty value (>0) |
None
|
epsilon |
float
|
reconstruction budget (>0) |
None
|
Raises:
Type | Description |
---|---|
AssertionError
|
if none of |
BadSegmentationParameters
|
in case of impossible segmentation configuration |
Returns:
Name | Type | Description |
---|---|---|
list |
sorted list of breakpoints |
Source code in ruptures/detection/binseg.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
single_bkp(start, end)
cached
#
Return the optimal breakpoint of [start:end] (if it exists).
Source code in ruptures/detection/binseg.py
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
|